Commit 2589b988 authored by Alison Carrera's avatar Alison Carrera
Browse files

Removed predicted proba.

parent fcf28d38
......@@ -22,12 +22,8 @@ onn_network.partial_fit(np.asarray([[0.8, 0.5]]), np.asarray([1]))
#Predict classes
predictions = onn_network.predict(np.asarray([[0.1, 0.2], [0.8, 0.5]]))
Predictions -- array([1, 1])
Predictions -- array([1, 0])
#Predict classes probabilities
predictions = onn_network.predict_proba(np.asarray([[0.1, 0.2], [0.8, 0.5]]))
Predictions -- array([[0.5048331 , 0.50083154],[0.49516693, 0.49916846]], dtype=float32)
```
## New features
......@@ -37,7 +33,6 @@ Predictions -- array([[0.5048331 , 0.50083154],[0.49516693, 0.49916846]], dtype=
## Contributors
- [Alison de Andrade Carrera](https://github.com/alison-carrera)
- [Fábio Silva Vilas Boas](https://github.com/fabiosvb)
## References
- [Online Deep Learning: Learning Deep Neural Networks on the Fly](https://arxiv.org/abs/1711.03705)
......@@ -127,22 +127,19 @@ class ONN():
if len(data.shape) != 1:
raise Exception("Wrong dimension for this Y data. It should have only one dimensions.")
def partial_fit(self, X_data, Y_data, show_loss=True):
def partial_fit_(self, X_data, Y_data, show_loss=True):
self.validate_input_X(X_data)
self.validate_input_Y(Y_data)
self.update_weights(X_data, Y_data, show_loss)
def predict_proba(self, X_data):
self.validate_input_X(X_data)
result = torch.softmax(
torch.sum(torch.mul(
self.alpha.view(self.max_num_hidden_layers, 1).repeat(1, len(X_data)).view(
self.max_num_hidden_layers, len(X_data), 1), self.forward(X_data)), 0), 0)
result[torch.isnan(result)] = 0
return result.data.cpu().numpy()
def partial_fit(self, X_data, Y_data, show_loss=True):
self.partial_fit_(X_data, Y_data, show_loss)
def predict(self, X_data):
def predict_(self, X_data):
self.validate_input_X(X_data)
return torch.argmax(torch.sum(torch.mul(
self.alpha.view(self.max_num_hidden_layers, 1).repeat(1, len(X_data)).view(
self.max_num_hidden_layers, len(X_data), 1), self.forward(X_data)), 0), dim=1).cpu().numpy()
def predict(self, X_data):
return self.predict_(X_data)
......@@ -6,7 +6,7 @@ with open(path.join(this_directory, 'README.md'), encoding='utf-8') as f:
long_description = f.read()
setup(name='onn',
version='0.0.5',
version='0.0.6',
description='Online Neural Network',
url='https://github.com/alison-carrera/onn',
author='Alison Carrera',
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment